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Fig. 1. shows an overview of the proposed framework for learning accurate representations and sparse data-driven BRDF models through analysis of the
space of BRDFs. The BRDF dictionary ensemble is trained once and can accurately represent a wide range of previously unseen materials.

This paper presents a novel sparse non-parametric BRDF model derived

using a machine learning approach to represent the space of possible BRDFs

using a set of multidimensional sub-spaces, or dictionaries. By training the

dictionaries under a sparsity constraint, the model guarantees high quality

representations with minimal storage requirements and an inherent clus-

tering of the BDRF-space. The model can be trained once and then reused

to represent a wide variety of measured BRDFs. Moreover, the proposed

method is flexible to incorporate new unobserved data sets, parameteriza-

tions, and transformations. In addition, we show that any two, or more,

BRDFs can be smoothly interpolated in the coefficient space of the model

rather than the significantly higher-dimensional BRDF space. The proposed

sparse BRDF model is evaluated using the MERL, DTU and RGL-EPFL BRDF

databases. Experimental results show that the proposed approach results in

about 9.75dB higher SNR on average for rendered images as compared to

current state-of-the-art models.
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1 INTRODUCTION
The bidirectional reflectance distribution function [Nicodemus et al.

1977] describes how light scatters at the surfaces of a scene, depend-

ing on their material characteristics. The BRDF is a 4D function

parameterized by the incident and exitant scattering angles and

can be described using either parametric models [Ashikhmin and

Shirley 2000; Blinn 1977; Cook and Torrance 1982; Löw et al. 2012;

Walter et al. 2007] or data-driven models [Bagher et al. 2016; Bilgili

et al. 2011; Jakob et al. 2014; Lawrence et al. 2004; Sun et al. 2018;

Tongbuasirilai et al. 2019]. Parametric models present great artistic

freedom and the possibility to interactively tweak parameters to

achieve the desired look and feel. However, most analytical models

are not designed for efficient and accurate representation of the

scattering properties of measured real-world materials. Data-driven

models on the other hand enable the use of measured BRDFs and

real-world materials directly in the rendering pipeline, and are com-

monly used in computer vision applications [Romeiro et al. 2008].

Data-driven models can represent BRDFs in many different ways.

Iterative-factored representations approximate BRDFs with multiple

low-rank components [Bilgili et al. 2011; Lawrence et al. 2004; Tong-

buasirilai et al. 2019], while hybrid analytical data-driven models

[Bagher et al. 2016; Sun et al. 2018] rely on non-parametric com-

ponents or basis functions computed using specific weighting and

optimization schemes.

The efficiency, or performance, of a non-parametric model is typ-

ically measured in terms of the number of variables/coefficients

required to represent a BRDF at a given quality. The number of
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coefficients, in turn, depends on the efficacy of the underlying basis

functions, often called dictionaries, in modeling the BRDF. Most,

if not all, existing methods either sacrifice the model accuracy to

achieve fast reconstruction for real-time applications, or aim for

high image fidelity leading to increased storage and computational

requirements. Another important aspect is the complexity of the

basis functions used in the representation. At one end of the spec-

trum, we have analytical basis functions such as spherical harmonics

and wavelets [Claustres et al. 2003; Ramamoorthi and Hanrahan

2001], which do not require the storage of the basis functions, at

the cost of low approximation accuracy, unless a large number of

coefficients is used. On the other end of the spectrum, we have

decomposition based methods [Bilgili et al. 2011] that model the

BRDF as a multiplication of a set of coefficients and a basis ma-

trix/tensor computed from data. Unfortunately, these approaches

require a computationally expensive decomposition, e.g. PCA or

SVD, for each BRDF individually and suffer from a high storage cost

for the basis itself. Another problem is that the expressiveness of

existing bases/decomposition methods is limited. Except for a few,

they are in most cases not designed for BRDF data, hence requiring

high numbers of coefficients for accurate BRDF representation.

The goal in this paper is to develop a new data-driven BRDF

model using a set of trained basis functions that enable highly ac-

curate representations with a minimal number of coefficients to

represent any BRDF. To solve this challenge, we derive a model that

in essence relies on decomposing BRDFs into a coefficient–basis

pair, but uses machine learning to adapt the basis to the space of

BRDFs in order to provide maximally sparse coefficients. Sparse

BRDF modeling is achieved using a novel BRDF dictionary ensem-

ble and a novel model selection algorithm to efficiently represent a

wide range of real-world materials. The learned BRDF dictionary

ensemble consists of a set of basis functions trained such that they

guarantee a very sparse BRDF representation and near optimal

signal reconstruction. Moreover, our model takes into account the

multidimensional structure of measured BRDFs (e.g. 3D or 4D de-

pending on the parameterization) and can exploit the information

redundancy in the entire BRDF space to reduce the number of co-

efficients. While in this paper we focus on isotropic materials, our

method can be readily applied to anisotropic materials, given a data

set of such materials.

The learned ensemble is versatile and can be trained only once

to be reused for representing a wide range of previously unseen

materials. Additionally, the dictionary ensemble is not restricted to

a single BRDF transformation as previous models. Instead, multiple

BRDF transformations can be included in the ensemble training

such that for each individual BRDF the best representation can

be automatically selected and used. This is achieved by a novel

model selection method to pick a dictionary in the ensemble that

leads to the sparsest solution, the smallest reconstruction error, and

the most suitable transformation with respect to rendering quality.

For the experiments and evaluations presented here, we use the

MERL [Matusik et al. 2003] and RGL-EPFL [Dupuy and Jakob 2018]

databases, which are divided into a training set and a test set used

for evaluation.

Another key contribution of this paper is a novel algorithm for

interpolating two or more BRDFs in the sparse coefficient space.

We propose to perform this task in the sparse coefficient space.

The key challenge is when the two BRDFs to be interpolated do

not lie in the same subspace, i.e. they use different dictionaries of

the ensemble. We propose a novel formulation for interpolation

of BRDFs that lie in different coordinate systems. The proposed

interpolation algorithm admits the construction of a smooth surface

over the coefficient space of all BRDFs represented using our model.

The main contributions of this paper are as follows:

• A novel non-parametric BRDF model using sparse representa-

tions that significantly outperforms existing decomposition-

basedmethodswith respect to bothmodel error and rendering

quality.

• A multidimensional dictionary ensemble learning method

tailored to measured BRDFs.

• A novel BRDF model selection method that chooses the best

dictionary for efficient BRDF modeling, as well as the most

suitable BRDF normalization function. This enables a unified

non-parametric BRDF model regardless of the characteristics

of the material.

• A novel algorithm for BRDF interpolation in the sparse coef-

ficient space rather than the BRDF space. We show that two

or more measured BRDFs can be linearly interpolated even if

each BRDF uses a distinct dictionary in the ensemble.

We compare the proposed non-parametric BRDF model to the cur-

rent state-of-the-art methods and demonstrate that it performs sig-

nificantly better in terms of rendering SNR and visual quality, as

well as having a lower reconstruction error. To the authors’ knowl-

edge this is the first BRDF model based on sparse representations

and dictionary learning.

Notations- Throughout the paper, we use the following notational

convention. Vectors and matrices are denoted by boldface lower-

case (a) and bold-face upper-case letters (A), respectively. Tensors
are denoted by calligraphic letters, e.g.A. A finite set of objects is

indexed by superscripts, e.g.

{
A(𝑖)

}𝑁
𝑖=1

, whereas individual elements

of a, A, and A are denoted a𝑖 , A𝑖1,𝑖2 , A𝑖1,...,𝑖𝑛 , respectively. The

determinant of A is denoted det(A). The ℓ𝑝 norm of a vector s, for
1 ≤ 𝑝 ≤ ∞, is denoted by ∥s∥𝑝 . Frobenius norm is denoted ∥s∥𝐹 .
The ℓ0 pseudo-norm of a vector, denoted ∥s∥0, defines the number

of non-zero elements in the vector. The 𝑛-mode product of a tensor

S and a matrix U is denoted S ×𝑛 U.

2 BACKGROUND AND RELATED WORK
Measured BRDFs have proven to be an important tool in achieving

photo-realism during rendering [Dong et al. 2016; Dupuy and Jakob

2018; Matusik et al. 2003]. Even highly-complex surfaces such as

layered materials require multiple components of measured data

to construct novel complex materials [Jakob et al. 2014]. Measured

materials, however, are high-dimensional signals with large memory

footprint and a key challenge is that small approximation errors

can lead to visual artifacts during rendering. To efficiently represent

such high-dimensional measured BRDF data, one can use parametric

models, or data-driven models, since densely-sampled BRDF data

imposes a large memory footprint, making it impractical to use in

many applications.
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Parametric models. By careful modeling, BRDFs can be encoded

with only a few parameters. The components or factors of such

models are based on either assumptions describing by the physics

of light – surface interactions using e.g. microfact theory [Cook

and Torrance 1982; Holzschuch and Pacanowski 2017; Walter et al.

2007], or empirical observations of BRDF behaviors [Ashikhmin

and Shirley 2000; Blinn 1977; Löw et al. 2012; Nishino and Lombardi

2011;Ward 1992]. However, in many practical cases and applications,

existing parametric models cannot accurately fit measured real-

world data, as mentioned in [Bagher et al. 2016].

Data-driven models. Due to their non-parametric property, data-

driven models are superior to parametric models in that the number

of degrees of freedom, or implicit model parameters, is much higher.

This means that the representative power is higher and the expected

approximation error is lower. Factored BRDF models use decompo-

sition techniques to factorize BRDF into several components. Matrix

and tensor decompositions have been used by Lawrence et al. [2004],

Soler et al.[2018], Bilgili et al. [2011], and Tongbuasirilai et al. [2019].

Moreover, factorization-based models have been used for interactive

BRDF editing [Ben-Artzi et al. 2006; Kautz and McCool 1999] and

real-time rendering [Soler et al. 2015]. Analytical basis functions

have been used for BRDF measurements using spherical harmonics

[Ghosh et al. 2009, 2010; Tunwattanapong et al. 2013] and BRDF

modeling using rational functions [Pacanowski et al. 2012].

A problem with existing factored models is that rank-1 approxi-

mations in most cases lead to inferior results. Accurate modeling

requires iterative solutions withmany layered factors. Analytic-data-

driven BRDF models [Bagher et al. 2016; Sun et al. 2018] employ

analytical models extended to a higher number of parameters fitted

with measured data to achieve higher accuracy. Cooper et al. [2021]

employ the Gaussian mixture model for BRDF representation and

clustering that is utilized in the inverse rendering problem. The

recent advancement of machine learning algorithms, in particular

deep learning, have led to new research directions on BRDF-related

topics [Dong 2019]. Deep learning has been used for BRDF editing

[Hu et al. 2020], BRDF acquisition [Deschaintre et al. 2018, 2019; Li

et al. 2018], compact BRDF representation for importance sampling

[Sztrajman et al. 2021], and inverse rendering using invertible neural

BRDFs [Chen et al. 2021]. Moreover, deep learning has also been

used for Bidirectional Texture Function (BTF) compression, see e.g.

[Rainer et al. 2019].

Dictionary Learning. One of the most commonly used dictionary

learning methods is K-SVD [Aharon et al. 2006], and its many vari-

ants [Marsousi et al. 2014; Mazhar and Gader 2008; Mukherjee et al.

2015; Rusu and Dumitrescu 2012], where a 1D signal (i.e. a vector) is

represented as a linear combination of a set of basis vectors, called

atoms. A clear disadvantage of K-SVD for BRDF representation is sig-

nal dimensionality. For instance, a measured BRDF in the MERL data

set, excluding the spectral information, is a 90×90×180 = 1, 458, 000

dimensional vector. In practice, the number of data points needed

for K-SVD dictionary training should be a multitude of the signal

dimensionality to achieve a high quality dictionary. In addition to

unfeasible computational power required for training, the limited

number of available measured BRDF data sets renders the utilization

of K-SVD impractical.

In contrast to 1D dictionary learning methods, multidimensional

dictionary learning has received only little attention in the literature

[Ding et al. 2017; Hawe et al. 2013; Roemer et al. 2014]. In multidi-

mensional dictionary learning, a data point is treated as a tensor,

and a dictionary is trained along each mode. For instance, given

our example above, instead of training one 1, 458, 000 dimensional

dictionary for the MERL data set, one can train three dictionaries (i.e.

one for each mode), where the atom size for these dictionaries are

90, 90 and 180, corresponding to the dimensionality of each mode.

To the best of our knowledge, there exists only a few multidimen-

sional dictionary learning algorithms. Our sparse BRDF model in

this paper is inspired by the multidimensional dictionary ensemble

training proposed in [Miandji et al. 2019], which has been shown

to perform well for high dimensional signals such as light fields

and light field videos. We will elaborate on our training scheme for

BRDFs in Section 3.2.

3 SPARSE DATA DRIVEN BRDF MODEL
Our non-parametric model is based on learning a set of multidi-

mensional dictionaries, a dictionary ensemble, spanning the space

of BRDFs, i.e. the space in which each BRDF is a single multi-

dimensional point. Each dictionary in the ensemble consists of a

set of basis functions (i.e. orthonormal matrices), representing each

dimension of the BRDF space, that admits sparse representation of

any measured BRDF using only a small number of coefficients as

illustrated in Figure 1. The dictionary ensemble is trained only once

on a given training set of measured BRDFs and can then be reused

to represent a wide range of different BRDFs. This is in contrast

to previous models that use tensor or matrix decomposition tech-

niques, where the basis and the coefficients are calculated for each

BRDF individually.

A major challenge when using machine learning methods, and in

particular dictionary learning, on BRDFs is the high dynamic range

inherent to the data. In Section 3.1, we describe two data transfor-

mations that when applied on measured BRDFs, they improve the

fitting to our non-parametric model, see Section 4. The training

of the multidimensional dictionaries is described in sections 3.2

and 3.3, followed by our model selection technique in Section 3.4,

where we describe a method to select the most suitable dictionary

in the ensemble for any unseen BRDF such that the coefficients are

maximally sparse, the modeling error is minimal, and that the data

transformation used is one that leads to a better rendering quality.

Finally, in Section 3.5 we present a novel algorithm for interpolating

two or more measured BRDFs, represented using our model, directly
in the representation space (i.e. using the sparse coefficients).

A BRDF can be parameterized in many different ways [Barla et al.

2015; Löw et al. 2012; Rusinkiewicz 1998; Stark et al. 2005]. Our

dictionary learning approach does not rely on the parameterization

of given BRDFs as long as the resolution of these BRDFs is the

same. For simplicity and to facilitate a fair comparison to previous

works, all the data sets we use here are based on the Rusinkiewicz’s

parameterization [Rusinkiewicz 1998] defined by (𝜃ℎ, 𝜃𝑑 , 𝜙𝑑 ), where
𝜃ℎ, 𝜃𝑑 are elevation angles of the half vector and the difference vector

respectively, 𝜙𝑑 is the azimuthal angle of the difference vector. The

sample BRDFs we use here are of resolution 90 × 90 × 180. The data

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Table 1. SNR of rendered images using the BRDF dictionaries trained with different dictionary sparsity levels: 32, 64, 128, and 256. Each dictionary has two
transformations, 𝜌𝑡1 and 𝜌𝑡2. The test set consists of 15 MERL materials (not included in the training). The bottom row shows the average SNR over the test
set. The underlined numbers are best SNR values for 𝜌𝑡1 and the bold numbers are the best SNR values for 𝜌𝑡2.

Material Ensemble with 𝜏𝑙 = 32 Ensemble with 𝜏𝑙 = 64 Ensemble with 𝜏𝑙 = 128 Ensemble with 𝜏𝑙 = 256

𝜌𝑡1

SNR(dB)
𝜌𝑡2

SNR(dB)
𝜌𝑡1

SNR(dB)
𝜌𝑡2

SNR(dB)
𝜌𝑡1

SNR(dB)
𝜌𝑡2

SNR(dB)
𝜌𝑡1

SNR(dB)
𝜌𝑡2

SNR(dB)
blue-fabric 53.9003 58.4393 57.0890 61.1925 56.7419 62.4704 58.7229 62.9932
blue-metallic-paint 54.8105 56.8017 52.4779 59.7930 54.2249 61.0643 52.5073 60.5738

dark-red-paint 44.1094 51.9677 45.8218 52.4098 48.4695 54.7743 46.3005 54.4020

gold-metallic-paint2 46.9514 38.6907 45.6783 36.0324 46.1956 37.4564 42.4208 41.1227
green-metallic-paint2 50.7108 41.8161 49.4635 39.3023 52.8230 43.0459 49.6811 50.2204
light-red-paint 41.4139 49.0550 43.7449 48.7451 47.7306 52.1905 45.1613 50.6002

pink-fabric2 44.8244 49.3862 48.5446 52.5484 52.6230 53.5701 52.5405 54.4938
purple-paint 43.8932 38.8859 42.2491 47.5648 48.2735 48.7324 45.3798 47.1568

red-fabric 47.5606 52.3038 50.9287 54.7831 53.9668 56.7085 55.3687 58.5863
red-metallic-paint 47.2351 40.3386 46.9943 38.4251 49.1860 42.1207 48.6971 42.6229
silver-metallic-paint2 40.3291 42.9256 44.0442 43.2292 44.0323 46.8208 46.4961 44.1504

specular-green-phenolic 48.4841 41.6432 47.3226 36.5157 49.4785 48.8586 49.2522 45.9519

specular-violet-phenolic 48.2384 42.7994 47.4994 37.9801 47.4863 44.5840 48.3638 41.3332

specular-yellow-phenolic 46.4907 39.1758 44.5259 36.1666 45.4146 35.4231 43.1846 36.4720

violet-acrylic 48.7179 44.0610 48.7112 38.9536 47.6828 42.0749 48.1322 36.7368

Average 47.1779 45.8860 47.6730 45.5761 49.6219 48.6596 48.8139 48.4944

sets are sampled with MERL encoding where a square-root function

is applied to 𝜃ℎ , see [Matusik et al. 2003].

3.1 BRDF data transformation
Measured BRDFs often exhibit a very high dynamic range, which

introduces many difficulties during parameter fitting and optimiza-

tion. It is therefore necessary to apply an invertible transformation

to the BRDF values using e.g. a log-mapping as suggested by [Löw

et al. 2012; Nielsen et al. 2015; Sun et al. 2018; Tongbuasirilai et al.

2019]. In this paper, we use two data transformation functions to

improve the performance of our model during training and testing.

The first transformation is based on log-plus transformation pro-

posed by Löw et al., [Löw et al. 2012]:

𝜌𝑡1 (𝜔ℎ, 𝜔𝑑 ) = log(𝜌 (𝜔ℎ, 𝜔𝑑 ) + 1), (1)

where 𝜌 is the original BRDF value, 𝜌𝑡1 is the transformed BRDF

value, and (𝜔ℎ , 𝜔𝑑 ) are vectors defining the half vector and the

difference vector defined by Rusinkiewicz’s parameterization, re-

spectively. For the second transformation, we use the log-relative
mapping proposed by Nielsen et al. [Nielsen et al. 2015]; however,

we exclude the denominator. We call this transformation cosine-
weighted-log:

𝜌𝑡2 (𝜔ℎ, 𝜔𝑑 ) = log(𝜌 (𝜔ℎ, 𝜔𝑑 ) ∗ cosMap(𝜔ℎ, 𝜔𝑑 ) + 1), (2)

where cosMap is a function thatmaps the inputs (𝜔ℎ, 𝜔𝑑 ) directions
in the MERL encoding to (𝜔𝑖 , 𝜔𝑜 ) in standard spherical coordinates,

and calculates the weights as𝑚𝑎𝑥 (cos(𝜃𝑖 ) ∗ cos(𝜃𝑜 ), 𝜖), where 𝜖 =
0.001.

Using the proposed non-parametric model, we have conducted

experiments using both transformations, see Table 1. The log-plus
transformation in (1) yields better results when compared to the

cosine-weighted-log transformation in (2) for glossy materials. The

cosine-weighted-log is in most cases a better choice for near-diffuse

BRDFs.

While we use the two most commonly used BRDF transforma-

tions, our sparse BRDF model is not limited to the choice of the

transformation function. Indeed, given any new such function, the

previously trained dictionary ensemble can be directly applied. How-

ever, to further improve the model accuracy, one can train a small

set of dictionaries given a training set obtained with the new BRDF

transformation. We then take the union of the previously and newly

trained ensembles of dictionaries. The expansion of the dictionary

ensemble is a unique characteristic of our model. We utilize this

property in Section 3.3 to combine different sets of dictionaries, each

trained with a distinct training sparsity. The same approach can be

used here for improving the model accuracy when a new measured

BRDF data set, that requires a more sophisticated transformation, is

given.

3.2 Multidimensional dictionary learning for BRDFs
To build the non-paramatric BRDF model, we seek to accurately

model the space of BRDFs using basis functions leading to a high

degree of sparsity for the coefficients while maintaining the visual

fidelity of each BRDF in the training set. To achieve this, the training

algorithm needs to take into account the multidimensional nature

of BRDF objects, typically 3D or 4D, depending on the parameteriza-

tion. Let {X (𝑖) }𝑁𝑙

𝑖=1
be a set of 𝑁𝑙 BRDFs, where X

(𝑖) ∈ R𝑚1×𝑚2×𝑚3
.

Here we do not assume any specific parameterization and only

require that all the BRDFs in {X (𝑖) }𝑁𝑙

𝑖=1
have the same resolution.

Moreover, as discussed in Section 3.1, we utilize two BRDF trans-

formations, 𝜌𝑡1 and 𝜌𝑡2. As a result, the training set consists of two

versions of each BRDF.

To achieve a sparse three-dimensional representation of {X (𝑖) }𝑁𝑙

𝑖=1
,

we train an ensemble of 𝐾 three-dimensional dictionaries, denoted

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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U(1,𝑘) ,U(2,𝑘) ,U(3,𝑘)

}𝐾
𝑘=1

, such that each BRDF, X
(𝑖)
, can be de-

composed as

X
(𝑖) = S

(𝑖) ×1 U(1,𝑘) ×2 U(2,𝑘) ×3 U(3,𝑘) , (3)

where U(1,𝑘) ∈ R𝑚1×𝑚1
, U(2,𝑘) ∈ R𝑚2×𝑚2

, U(3,𝑘) ∈ R𝑚3×𝑚3
, and

𝑘 ∈ {1, . . . , 𝐾}. The notation ×𝑛 is used to denote the 𝑛-mode prod-

uct between a tensor and a matrix as described in [Kolda and Bader

2009]. Moreover, the tensor S (𝑖) ∈ R𝑚1×𝑚2×𝑚3
contains a set of

sparse coefficients and we require




S (𝑖)




0

≤ 𝜏 , where 𝜏 is a user-

defined sparsity parameter to achieve a certain sparsity in the rep-

resentation. Recall from Section 1 that the ℓ0 norm, denoted ∥.∥0,
counts the number of nonzero elements in a vector, a matrix, or a

tensor. It is evident from (3) that each BRDF is represented using

one dictionary in the ensemble, in this case

{
U(1,𝑘) ,U(2,𝑘) ,U(3,𝑘)

}
.

Moreover, we require that the number of dictionaries to be much

smaller than the number BRDFs in the training set, i.e. 𝐾 ≪ 𝑁𝑙 . As

a result, the training algorithm divides the training set into a set of

cluster, where each cluster is represented using one dictionary.

The ensemble training is performed by solving the following

optimization problem

min

U( 𝑗,𝑘 ) ,S (𝑖,𝑘 ) ,M𝑖,𝑘

𝑁𝑙∑︁
𝑖=1

𝐾∑︁
𝑘=1

M𝑖,𝑘




X (𝑖)−

S
(𝑖,𝑘) ×1 U(1,𝑘) ×2 U(2,𝑘) ×3 U(3,𝑘)




2
𝐹

(4a)

subject to(
U( 𝑗,𝑘)

)𝑇
U( 𝑗,𝑘) = I, ∀𝑘 = 1, . . . , 𝐾, ∀𝑗 = 1, . . . , 3, (4b)


S (𝑖,𝑘)





0

≤ 𝜏𝑙 , (4c)

𝐾∑︁
𝑘=1

M𝑖,𝑘 = 1, ∀𝑖 = 1, . . . , 𝑁𝑙 , (4d)

where the matrixM ∈ R𝑁𝑙×𝐾
is a clustering matrix associating each

BRDF in the training set to one multidimensional dictionary in the

ensemble. Equation (4b) ensures the orthonormality of each multi-

dimensional dictionary, the sparsity of the coefficients is enforced

by (4c), and the single dictionary representation is enforced by the

constraint in (4c). The user-defined parameter 𝜏𝑙 defines the training

sparsity. It should be noted that the clustering matrix M divides

the BRDFs in the training set into a set of clusters such that opti-

mal sparse representation is achieved with respect to the number

of model parameters (or coefficients) and the representation error.

This clustering is an integral part of our model and improves the

accuracy of BRDF representations. The supplementary document

accompanying this manuscript contains the update rules for solving

(4) iteratively with respect to U( 𝑗,𝑘)
, S (𝑖,𝑘)

, andM𝑖,𝑘 .

Our sparse BRDF modeling is inspired by the Aggregate Multi-

dimensional Dictionary Ensemble (AMDE) proposed by Miandji et

al. [Miandji et al. 2019]. However we do not perform pre-clustering

of data points, in this case BRDFs, for the following two reasons:

First, the number of existing measured BRDF data sets is very lim-

ited. Hence, if we apply pre-clustering, the number of available

BRDFs to train a dictionary ensemble becomes inadequate. Sec-

ond, since we use each BRDF as a data point, the size of each data

point is 90 ∗ 90 ∗ 180 = 1458000, hence rendering the proposed

pre-clustering method in [Miandji et al. 2019] impractical. Indeed,

the two BRDF transformations discussed in Section 3.1 can be seen

as a pre-clustering of the training set. These transformations divide

the training set into diffuse and glossy BRDFs. Moreover, as it will

be described in Section 3.3, and unlike the method of Miandji et

al. [Miandji et al. 2019], we perform multiple trainings of the same

training set but with different values for the training sparsity param-

eter, 𝜏𝑙 . The obtained ensembles are combined to form an ensemble

that can efficiently represent BRDFs with less reconstruction error.

3.3 BRDF Dictionary ensemble with multiple sparsities
Measured BRDFs exhibit a variable degree of sparsity in the repre-

sentation space (also known as the coefficient space). Indeed given a

suitable dictionary, a diffusematerial requires only a small number of

coefficients while a highly glossy BRDF needs a significantly higher

number of coefficients for an accurate representation. This phenom-

enon has been observed by previous work on non-parametric mod-

eling of BRDFs based on factorization or using commonly known

basis functions such as spherical harmonics [Lawrence et al. 2004;

Nielsen et al. 2015; Sun et al. 2018; Tunwattanapong et al. 2013]. A

shortcoming of the dictionary ensemble learning method described

in Section 3.2 is that we do not take into account the intrinsic spar-

sity of various materials in the training set. In other words, since

the training sparsity 𝜏𝑙 is fixed for all the BRDFs in the training set,

a small value for 𝜏𝑙 will steer the optimization algorithm to more

efficiently model low frequency (or diffuse-like) materials, while

neglecting high frequency materials. Moreover, when 𝜏𝑙 is large, the

dictionary optimization adapts to high frequency materials, leading

to degradation of quality for diffuse materials due to over-fitting.

Indeed, finding the optimal values of 𝜏𝑙 for a set of BRDFs is a te-

dious task, and requires various assumptions on the behavior of

these materials in the representation space.

Instead of finding the optimal values for 𝜏𝑙 for a large and diverse

set of BRDFs in the training set, we train multiple ensembles of

dictionaries, each with a different value for 𝜏𝑙 , so that we can model

both low and high frequency details of the training BRDFs more

efficiently, while lowering the risk of over-fitting. After training

each ensemble according to the method described in Section 3.2,

we combine them all to form one ensemble that includes all the

dictionaries. We then utilize our model selection algorithm, see

Section 3.4, for selecting the optimal dictionary in the combined

ensemble for a given BRDF. Regardless of the material properties,

e.g. low or high frequency, our model selection is able to select the

best dictionary in the ensemble for the vast majority of cases, see

Section 4 for details. In this paper, we train 4 ensembles, each with

8 dictionaries, which are trained with 𝜏𝑙 = 32, 𝜏𝑙 = 64, 𝜏𝑙 = 128,

and 𝜏𝑙 = 256; hence, the final ensemble consists of 32 dictionaries.

Note that the combined ensemble with 32 dictionaries only requires

(32 ∗ (90 ∗ 90 + 90 ∗ 90 + 180 ∗ 180) ∗ 4) / 1024
2 = 5.93MB of storage,

assuming 4 bytes for each element. Therefore, our ensemble can be

used in applications where storage capabilities are very limited. In
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Table 2. Rendering SNR, Gamma-mapped-MSE, and MSE, obtained using our sparse BRDF model for 𝜌𝑡1 and 𝜌𝑡2. For each error metric, the best result
between 𝜌𝑡1 and 𝜌𝑡2 is shown by bold numbers. Comparing the chosen transformation based on rendering SNR with Gamma-mapped-MSE and MSE in the
BRDF space, we see that the Gamma-mapped-MSE can well distinguish the suitable transformation for 13 out of 15 materials. It can also be seen that MSE
only selects the correct transformation for 3 out of 15 materials. For results generated using Gamma-mapped-MSE, we set 𝛾 = 2.0.

Material Rendering SNR (dB) Gamma-mapped-MSE MSE
Our 𝜌𝑡1 Our 𝜌𝑡2 Our 𝜌𝑡1 Our 𝜌𝑡2 Our 𝜌𝑡1 Our 𝜌𝑡2

blue-fabric 53.99 62.16 0.0233 0.0038 0.0002 0.0062

blue-metallic-paint 51.65 60.53 0.0448 0.0375 0.0011 0.0317

dark-red-paint 49.16 54.80 0.0616 0.0242 0.0295 0.1209

gold-metallic-paint2 48.29 37.68 0.9248 0.9350 72.0330 38.7850
green-metallic-paint2 57.48 43.36 0.8767 0.8939 31.5660 11.9140
light-red-paint 46.51 51.68 0.0552 0.0312 0.0567 0.1699

pink-fabric2 52.66 52.71 0.0230 0.0125 0.0003 0.0323

purple-paint 45.81 47.24 0.1991 0.1725 2.8225 2.1342
red-fabric 56.26 55.05 0.0177 0.0078 0.0002 0.0172

red-metallic-paint 52.70 42.62 1.2910 1.3086 45.0140 19.3610
silver-metallic-paint2 44.70 44.55 0.0988 0.0895 0.0029 0.1217

specular-green-phenolic 53.09 36.67 0.9889 1.0161 27.1120 14.0560
specular-violet-phenolic 50.51 38.21 0.9722 0.9925 22.4920 14.34100
specular-yellow-phenolic 46.81 36.40 0.9454 0.9686 18.8780 10.6280
violet-acrylic 50.07 42.61 0.7770 0.7849 20.2560 12.7940

Table 1, we present rendering SNR results obtained from ensembles

trained with different values for the training sparsity, 𝜏𝑙 .

Our BRDFmodel represents each BRDF using one dictionary from

the ensemble. Each dictionary can be seen as a set of basis functions

spanning the BRDF manifold in a local neighborhood defined by

the dictionary. Therefore, our ensemble of 32 dictionaries defines

32 local coordinate frames for representing the space of all BRDFs

defined on a manifold. This is in contrast to the PCA dictionary used

in [Nielsen et al. 2015], where a single coordinate frame defined the

BRDF manifold, or the diffuse-specular separation method [Sun et al.

2018], where two coordinate frames representing diffuse and specu-

lar properties are defined. Hence, our method, where the number of

dictionaries or coordinate frames, is more flexible and expressive to

cover a greater range of material classes. Indeed, the membership

matrix, M, can be thought of as a clustering matrix for the BRDF

manifold. During training, a BRDF is assigned to a dictionary in

which it is best represented given the limited number of coefficients

defined by 𝜏𝑙 . The different dictionaries represent different physical

properties of BRDFs. Table 1 demonstrates that e.g. phenolic and

paint materials cluster in dictionaries with low sparsity and that

more glossy or specular BRDFs reside in high sparsity dictionaries.

In addition, our ensemble can be expanded by training more dictio-

naries and adding them to the existing ensemble. This is particularly

useful for modeling new data sets or new data transformations, if

the existing ensemble does not provide satisfactory results.

3.4 BRDF model selection
Once the ensemble of dictionaries is trained, the next step is to use

it for the sparse representation of BRDFs. We call this stage model
selection, since our dictionaries in the ensemble are trained with

different transformations and sparsities, we need to find one dictio-

nary that leads to the most sparse coefficients with the least error,

as well as the best performing transformation between 𝜌𝑡1 and 𝜌𝑡2.

Indeed, as mentioned in Section 3.1, our method is not limited to

the number of transformations. In what follows, the term ensem-
ble refers to the combined ensemble that is trained with multiple

sparsities and BRDF transformations, as described in Section 3.3

We begin by describing our method for selecting the most suitable

dictionary in the ensemble for BRDF representation. This can be

achieved by projecting each BRDF onto all the dictionaries in the

ensemble. Let {Y (𝑖) }𝑁𝑡

𝑖=1
be a BRDF test set. The projection step is

formulated as

ˆS
(𝑖,𝑘)

= Y
(𝑖) ×1

(
U(1,𝑘)

)𝑇
×2

(
U(2,𝑘)

)𝑇
×3

(
U(3,𝑘)

)𝑇
, (5)

whereY
(𝑖)

is a BRDF in the testing set that we like to obtain a sparse

representation of. As discussed in Section 3.1, we utilize two BRDF

transformations, 𝜌𝑡1 and 𝜌𝑡2. As a result, the testing set consists

of two versions of each BRDF {Y (𝑖) }𝑁𝑡

𝑖=1
. The smallest components

in the coefficient tensors
ˆS
(𝑖,𝑘)

are progressively nullified until we

reach a user defined sparsity level, called the testing sparsity, 𝜏𝑡 , or

when the representation error becomes larger than a user defined

threshold. The testing sparsity, which defines the model complexity,

is different than the training sparsity 𝜏𝑙 and we typically require 𝜏𝑡 ≥
𝜏𝑙 . Generally, a higher value for 𝜏𝑡 is required for glossy materials

than for diffuse to achieve an accurate BRDF representation. Indeed,

the number of coefficients provides a trade-off between quality and

performance, making our model flexible enough to be applied in a

variety of applications.

After sparsifying
ˆS
(𝑖,𝑘)

, ∀𝑘 ∈ {1, . . . , 𝐾}, we pick the dictio-

nary corresponding to the sparsest coefficient tensor among
ˆS
(𝑖,𝑘)

,

∀𝑘 ∈ {1, . . . , 𝐾}. If all the coefficient tensors
ˆS
(𝑖,𝑘)

, ∀𝑘 ∈ {1, . . . , 𝐾}
achieve the same sparsity, we pick the dictionary corresponding to

the least reconstruction error. Note that since the number of BRDFs

in a test set, which contains the set of all possible BRDFs with the

same resolution, is always larger than the number of dictionaries
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in the ensemble, i.e. 𝑁𝑡 > 𝐾 , the dictionary selection algorithm

described above clusters the test set based on the dictionaries such

that each cluster of BRDFs in the test set uses one dictionary of the

ensemble. Recall that the same property holds for the training set

since 𝑁𝑙 ≫ 𝐾 .

The reconstruction error for a BRDF in the test set,Y
(𝑖)
, modeled

using a dictionary

{
U(1,𝑘) ,U(2,𝑘) ,U(3,𝑘)

}
, 𝑘 ∈ {1, . . . , 𝐾}, is simply

calculated as


Y (𝑖) − ˆS
(𝑖,𝑘) ×1 U(1,𝑘) ×2 U(2,𝑘) ×3 U(3,𝑘)




2
𝐹
. (6)

Because the BRDF dictionary ensemble is trained once and can be

used for the sparse representation of unobserved BRDFs, the storage

cost of the model in (3) is defined by the storage complexity of the

sparse coefficient tensor
ˆS
(𝑖)

in (5). We store the nonzero elements

in
ˆS
(𝑖)

as tuples of nonzero element locations and values, denoted{
𝑙1𝑡 , 𝑙

2

𝑡 , 𝑙
3

𝑡 ,
ˆS
(𝑖)
𝑙1𝑡 ,𝑙

2

𝑡 ,𝑙
3

𝑡

}𝜏𝑡
𝑡=1

, where the indices 𝑙1𝑡 , 𝑙
2

𝑡 , and 𝑙
3

𝑡 store the loca-

tion of the 𝑡th nonzero element of
ˆS
(𝑖)
, while the corresponding

value is
ˆS
(𝑖)
𝑙1𝑡 ,𝑙

2

𝑡 ,𝑙
3

𝑡
.

The reconstruction of a given BRDF, Y
(𝑖)
, using our model is

computed by multiplying the sparse coefficient tensor
ˆS
(𝑖,𝑘)

with

the corresponding dictionary as follows

ˆY
(𝑖)

= ˆS
(𝑖,𝑘) ×1 U(1,𝑘) ×2 U(2,𝑘) ×3 U(3,𝑘) , (7)

where 𝑘 is the index of the dictionary chosen by the model selection

method described above. Thanks to the fact that the coefficient

tensor
ˆS
(𝑖,𝑘)

is sparse, Equation (7) is computationally tractable

even for real-time applications. Indeed, we can evaluate (7) by only

multiplying the nonzero elements of
ˆS
(𝑖,𝑘)

with the dictionary, as

shown in [Miandji et al. 2019]. Reconstructing a single element in

a BRDF only requires 3𝜏𝑡 operations of type multiply-add (MAD).

Indeed, for ray tracing applications, we only to reconstruct one or

a few elements of the BRDF tensor at each ray intersection point.

Moreover, since 𝜏𝑡 is user-defined, our method is computationally

flexible and can provide an intuitive which makes it suitable for a

variety of applications.

Since our dictionary is trained with two sets of transformed

BRDFs, i.e. 𝜌𝑡1 and 𝜌𝑡2, we can obtain two reconstructed BRDFs from

an unseen BRDF by employing the algorithm described above. This

still leaves us with the problem of selecting the best reconstructed

BRDF between 𝜌𝑡1 and 𝜌𝑡2. Due to the discrepency between quanti-

tative quality metrics computed over the BRDF space (such as MSE)

and the rendering quality [Bieron and Peers 2020], model selection

is a difficult task for BRDF fitting, as well as learning based methods

such as ours. For instance, log-based metrics [Löw et al. 2012; Sun

et al. 2018] have been used to improve efficiency of fitting measured

BRDFs to parametric functions. Indeed, the most reliable technique

is to render a collection of images for all possible variations of the

model and select one that is closest to an image rendered using

the reference BRDF. This approach has been used by Bieron et al.

[Bieron and Peers 2020] for BRDF fitting. To reduce the number of

renderings, multiple BRDF parameter fitting are performed using a

power function with different inputs. The model selection is then

performed by rendering a test scene and choosing the best model

based on image quality metrics.

We propose a model selection approach that does not require

rendering the reconstructed 𝜌𝑡1 and 𝜌𝑡2 variants of BRDFs. From

our observations, we found that the MSE as an error metric in

the model selection algorithm, see (6), does not match a selection

method based on rendering quality to choose from 𝜌𝑡1 and 𝜌𝑡2, see

Table 2. To address this problem, we use a Gammamapping function,

Γ(𝜌,𝛾) = 𝜌1/𝛾 , on the reference 𝜌𝑡1, and 𝜌𝑡2, prior to computing the

MSE. We refer to this error metric as Gamma-mapped-MSE. Note
that since the reference BRDF is in linear BRDF domain, i.e. it is

not transformed, we invert 𝜌𝑡1 and 𝜌𝑡2 according to (1) and (2),

respectively, prior to computing the Gamma-mapped-MSE.

In Table 2 we report reconstruction quality measured with ren-

dering SNR, Gamma-mapped-MSE, and MSE for both 𝜌𝑡1 and 𝜌𝑡2.

For these results, we used 15 test materials from the MERL data set,

while the remaining 85 materials were used for training. For each

error metric, the best result is highlighted in bold-face characters. It

can be seen that Gamma-mapped-MSE can well distinguish the best

transformation among 𝜌𝑡1 and 𝜌𝑡2 with respect to rendering SNR

for 13 out of 15 materials. The two exceptions are red-fabric and
silver-metallic-paint2. It can also be seen that MSE only selects the

correct transformation for 3 out of 15 materials. To obtain Gamma-

mapped-MSE results we used 𝛾 = 2.0. Indeed, this parameter can

be tuned per-BRDF to further improve our results; however, we

found that fixed value of 𝛾 = 2.0 is adequate to achieve a significant

advantage over previous methods. Compared to [Bieron and Peers

2020], our model selection approach provides greater flexibility by

considering rendering quality (via Gamma-mapped-MSE), BRDF
transformations (using 𝜌𝑡1 and 𝜌𝑡2), as well as model complexity

(via 𝜏𝑙 ).

3.5 BRDF interpolation in sparseland
In this section, we describe our method for interpolating two or

more BRDFs, where we consider two scenarios: when the BRDFs

use the same dictionary from the ensemble, and when each BRDF

uses a distinct dictionary. Unlike previous methods, we perform the

interpolation in the lower-dimensional space defined by the sparse

coefficients, as opposed to interpolating the BRDFs in the original

high-dimensional BRDF-space. We show that using our model, one

can efficiently interpolate between BRDFs even when they use differ-

ent dictionaries. BRDF interpolation on a nonlinear space has been

previously explored using the charting algorithm [Brand 2002; Ma-

tusik et al. 2003], where locally linear lower-dimensional subspaces

are constructed with the same dimensionality. Here, we show that

when two or more BRDFs are sparse in distinct dictionaries, BRDF

interpolation in the sparse coefficient space is possible. Moreover,

each BRDF that is used for interpolation using our model can have

different sparsity. Compared to [Brand 2002; Matusik et al. 2003],

the local subspaces in our model can have different dimensionalities

in the representation space. In what follows, and without loss of

generality, we present our interpolation method for two BRDFs.

Extension of our formulation to three or more BRDF data points is

straightforward.
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As described in sections 1 and 2, existing non-parametric models

obtain the model coefficients by fitting techniques that are applied

for each BRDF individually. Therefore, the resulting coefficients

for each BRDF do not necessarily share a common basis. Since

the coefficients of each BRDF to be interpolated lie in a distinct

coordinate system, one cannot perform the interpolation in the

coefficient space. It should be noted that, once a BRDF is represented

using a non-parametric model, we do not have access to the original

BRDF. The only information that is available is the coefficients and

the representation basis (i.e. the dictionary). Therefore, it is essential

to perform the interpolation in the coefficient space.

In order to interpolate non-parametric BRDFs in the coefficient

space, one should define a common basis for the BRDFs to be inter-

polated, e.g. by employing Principal Component Analysis (PCA) as

in [Nielsen et al. 2015]. Since all the BRDF lie in the same coordinate

space, defined by the principal components, one can linearly inter-

polate the coefficients instead of the original BRDFs. Note that this

property is not shared by the majority of non-parametric models

[Bagher et al. 2016; Bilgili et al. 2011]. The interpolated coefficients

and the principal components are then used to reconstruct the re-

sulting BRDF. However, as it will be shown in Section 4, having one

common basis (i.e. the set of principal components) for the entire

space of possible BRDFs leads to vastly inferior results due to inade-

quate model capacity. If we define multiple dictionaries, as with our

proposed method, then two BRDFs that are represented with two

distinct dictionaries cannot be interpolated in the coefficient space.

This is evident since these two BRDFs use two distinct coordinate

systems. Our proposed interpolation technique overcomes this limi-

tation by transforming the sparse coefficients into a common basis,

which enables the interpolation directly in the coefficient space.

Let B1, B2, B3 be three BRDFs that respectively use the dictio-

naries

{
U(1,1)

, U(2,1)
, U(3,1)

}
,

{
U(1,1)

, U(2,1)
, U(3,1)

}
, and

{
U(1,2)

,

U(2,2)
, U(3,2)

}
, respectively; i.e. we assume that B1 and B2 use the

same dictionary from the ensemble. The linearly interpolated BRDF

obtained from B1 and B2, which we denote I, is then given by

I = (1 − 𝛼)B1 + 𝛼B2 (8)

= (1 − 𝛼)S1 ×1 U(1,1) ×2 U(2,1) ×3 U(3,1)

+ 𝛼S2 ×1 U(1,1) ×2 U(2,1) ×3 U(3,1)
(9)

= ((1 − 𝛼)S1 + 𝛼S2) ×1 U(1,1) ×2 U(2,1) ×3 U(3,1) , (10)

where S1 and S2 are the sparse coefficients of B1 and B2, re-

spectively; the parameter 𝛼 is the interpolation coefficient. Note

that, equation (10) follows from (9) only because the dictionary{
U(1,1) ,U(2,1) ,U(3,1)

}
is used by both B1 and B2. One can apply

the same approach for bilinear and bicubic interpolation, or even

interpolation of BRDFs over triangles using barycentric coordinates.

To interpolate two BRDFs that do not share the same basis, i.e.

when they are modeled using two distinct dictionaries from the

ensemble, one cannot utilize (10). For this case, we propose to trans-

form the sparse coefficients of all BRDF data points that are used in

the interpolation into a common basis by choosing one dictionary as

the reference basis. In this way, we can utilize (10) for interpolation

in the coefficient space rather than the BRDF space. To elaborate

on this, and without loss of generality, let us present our approach

for interpolating B1 and B3, which use two distinct dictionaries{
U(1,1) ,U(2,1) ,U(3,1)

}
and

{
U(1,3) ,U(2,3) ,U(3,3)

}
, respectively. Our

method is based on a simple observation: Given two orthonormal

matrices, say D1 and D2, of the same dimensionality, there exists a

unique orthonormal transformation matrix, R, such that D1 = D2R
or D2 = D1R𝑇 . More concretely,

Proposition 1. Let A and B be two distinct orthonormal matrices.
Then the solution of

min

R
∥B − AR∥2𝐹 subject to R𝑇R = I, (11)

is R = A𝑇B.

The proof of Proposition 1 can be found in [Gower and Dijkster-

huis 2004]. Note that Proposition 1 is a variant of the Orthogonal

Procrustes problem with the difference that here we assume that the

matrices A and B are orthonormal; as a result, the transformation

matrix R is either a rotation or rotation-reflection matrix, depending

on whether det(R) = 1 or det(R) = −1.
Let R(𝑖,𝑘)→(𝑖, 𝑗)

be the transformation matrix that transforms

the orthonormal matrix U(𝑖,𝑘)
to U(𝑖, 𝑗)

; i.e. we have that U(𝑖, 𝑗) =
U(𝑖,𝑘)R(𝑖,𝑘)→(𝑖, 𝑗)

. It should be noted that, according to Proposition

1, we can only compute R(𝑖,𝑘)→(𝑖, 𝑗)
for two orthonormal matrices

of the same dimensionality. This is reflected in the fact that the

index 𝑖 is shared by U(𝑖,𝑘)
and U(𝑖, 𝑗)

, i.e. the matrices that define an

orthonormal basis for the 𝑖th mode of BRDFs. The transformation

matrices, to be obtained using Proposition 1, between the dictionar-

ies for B1 and B3 are

U(1,2) = U(1,1)R(1,1)→(1,2)
(12)

U(2,2) = U(2,1)R(2,1)→(2,2)
(13)

U(3,2) = U(3,1)R(3,1)→(3,2)
(14)

We can now state the formula for interpolating between two BRDFs

that are not represented by a common dictionary, namely B1 and

B3 as given by the example above.

I = (1 − 𝛼)B1 + 𝛼B3 (15)

= (1 − 𝛼)S1 ×1 U(1,1) ×2 U(2,1) ×3 U(3,1)

+ 𝛼S3 ×1 U(1,2) ×2 U(2,2) ×3 U(3,2)
(16)

= (1 − 𝛼)S1 ×1 U(1,1) ×2 U(2,1) ×3 U(3,1)

+ 𝛼S3 ×1 U(1,1)R(1,1)→(1,2)

×2 U(2,1)R(2,1)→(2,2) ×3 U(3,1)R(3,1)→(3,2)
(17)

= (1 − 𝛼)S1 ×1 U(1,1) ×2 U(2,1) ×3 U(3,1)

+ 𝛼
(
S3 ×1 R(1,1)→(1,2) ×2 R(2,1)→(2,2) ×3 R(3,1)→(3,2)

)
︸                                                                ︷︷                                                                ︸

˜S3

×1 U(1,1) ×2 U(2,1) ×3 U(3,1) , (18)

=

(
(1 − 𝛼)S1 + 𝛼 ˜S3

)
×1 U(1,1) ×2 U(2,1) ×3 U(3,1) , (19)

where (18) follows from (17) due to a fundamental property of the

n-mode product [Kolda and Bader 2009]. Equation (18) shows that
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one can apply the transformation matrices onto the coefficients

of B2 to transform them into the coordinate space of B1 defined

by

{
U(1,1) ,U(2,1) ,U(3,1)

}
. When we have more than two BRDFs

to interpolate, where each BRDF uses a distinct dictionary from

the ensemble, we choose one dictionary as the reference basis and

utilize (18) to transform all coefficients to this reference dictionary.

Afterwards, linear, bilinear or cubic interpolation can be done on

coefficients directly. The results are then multiplied by the reference

dictionary to obtain the interpolated BRDF, as in (19).

It can be noted from (19) that
˜S3 is not necessarily sparse since it

is obtained from multiplying the sparse tensor S3 by the dense ma-

trices

{
R(1,1)→(1,2) ,R(2,1)→(2,2) ,R(3,1)→(3,2)

}
. To achieve a desired

sparsity for the interpolated BRDF, we utilize the projection step

of the model selection algorithm in Section 3.4. Note that since the

dictionary is known, i.e.

{
U(1,1) ,U(2,1) ,U(3,1)

}
, we do not need to

perform the full model selection algorithm. This operation can be

thought of as re-projecting the interpolated BRDF onto the sparse

BRDF manifold. Moreover, it allows us to obtain a desired sparsity

for the interpolated BRDF, since the re-projection sparsity can be

different than the sparsity of the BRDFs used for interpolation. It

should be noted that our interpolation algorithm does not require

equal sparsity for the BRDFs used in the interpolation.

The interpolation algorithm proposed above admits the construc-

tion of a smooth surface over the coefficient space of all BRDFs

represented using our model. Since our model enables the efficient

sparse representation of any measured BRDF, any two (or more)

BRDFs can be smoothly interpolated in the coefficient space using

our model.

3.6 Importance sampling
For the results presented in this paper, we utilize the Rusinkiewicz’s

parameterization defined by (𝜃ℎ, 𝜃𝑑 , 𝜙𝑑 ). As a result, Multiple Impor-

tance Sampling (MIS) can be utilized in the same way as the method

presented in [Bagher et al. 2016]. A two-dimensional Cumulative

Distribution Function (CDF) can be constructed from our sparse

BRDF representation using the luminance channel. The inverted

CDF is then used to sample directions proportional to the BRDF.

For the example renderings in Section 4 where HDR environment

maps are used, this is also combined with a two-dimensional CDF

for sampling the illumination from the environment maps. The mul-

tiple importance sampling strategies are combined using MIS as

suggested in [Bagher et al. 2016].

4 RESULTS AND DISCUSSION
This section presents an evaluation of the proposed BRDFmodel and

comparisons to the current state-of-the-art models in terms of BRDF

reconstruction error and rendering quality. The rendering results

were generated using PBRT [Pharr and Humphreys 2010] with the

Grace Cathedral environment map. The images were rendered at a

resolution of 512 × 512 pixels using 512 pixel samples in PBRT with

the directlighting surface integrator and 256 infinite light-source
samples.

The BRDF dictionary was trained using materials from the MERL

database [Matusik et al. 2003] and RGL-EPFL isotropic BRDF data-

base [Dupuy and Jakob 2018]. We split the MERL and RGL-EPFL

materials into a training set and a test set. The training set contains

136 materials, where 85 materials are from the MERL dataset and

51 materials are from the RGL-EPFL dataset. The test set contains

28 materials with 15 materials from the MERL dataset, 8 materials

from the DTU data set [Nielsen et al. 2015] and 5 materials from

RGL-EPFL. The training and test sets cover a wide range of mate-

rial classes and none of the materials in the test set appear in the

training set.

Each BRDF color channel is processed independently for the train-

ing andmodel selection.We use the Rusinkiewicz’s parameterization

[Rusinkiewicz 1998], at a resolution of 90 × 90 × 180, i.e. we have

𝑚1 = 90,𝑚2 = 90, and𝑚3 = 180. For our experiments, we trained

four ensembles, each with 𝐾 = 8 dictionaries and with training spar-

sities of 𝜏𝑙 = 32, 𝜏𝑙 = 64, 𝜏𝑙 = 128, and 𝜏𝑙 = 256. We then construct

one ensemble by taking the union of the dictionaries in the four en-

sembles that were trained, as described in Section 3.3. The training

BRDFs were transformed using log-plus (𝜌𝑡1) and cosine-weighted-
log (𝜌𝑡2) functions before starting the training, hence resulting in

272 materials. The training took about 11 hours on a machine with

40 cores clocked at 2.4GHz.

Once the ensemble is trained, we use the model selection algo-

rithm, described in Section 3.4, to obtain the optimal sparse coef-

ficients of each BRDF in the test set. The model selection for each

BRDF and for all three color channels takes about 61 seconds us-

ing a CPU with 16 cores clocked at 3.8GHz. Note that the model

selection can be parallelized over the BRDFs in the test set since

this task is performed independently for each BRDF. Moreover,

the reconstruction of all the elements of a measured BRDF, i.e. a

total of 4, 374, 000 elements, takes 17 seconds using the same hard-

ware setup. It should be noted that during rendering, only one

or a few values from the measured BRDF is needed at each inter-

section point. In this case, we utilize the algorithm proposed in

[Miandji et al. 2019] to recover a single element. In addition, since

the reconstruction in (7) is based on the 𝑛-mode product of a sparse

tensor and dense matrices, we can utilize the GPU-based algorithm

in [Baravdish. et al. 2019] for real-time applications. We have left

this application for future work. A CPU-based implementation of

our method for model selection and reconstruction is provided at

https://github.com/emiandji/ sparse-brdf .
To evaluate our sparse BRDF model, we use two quality met-

rics: Signal-to-Noise Ratio (SNR) that is calculated on the rendered

images (floating-point images) and Relative Absolute Error (RAE),

which is computed on linear BRDF values. Note that since the refer-

ence BRDF is in linear BRDF domain, i.e. it is not transformed, we

invert the transformation of the reconstructed BRDF (which may

be 𝜌𝑡1 or 𝜌𝑡2 depending on the model selection result) to transform

it back to the linear space prior to computing the RAE. The RAE is

defined as

𝑅𝐴𝐸 =

√√√∑(𝜌𝑟𝑒 𝑓 − 𝜌𝑟𝑒𝑐𝑜𝑛)2∑(𝜌2
𝑟𝑒 𝑓

)
, (20)

where 𝜌𝑟𝑒 𝑓 is the reference BRDF, and 𝜌𝑟𝑒𝑐𝑜𝑛 is the reconstructed

BRDF. Even though rendering SNR (or PSNR) is typically used to

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Table 3. Average, standard deviation, minimum, and maximum rendering SNR values of each BRDF model obtained from 15 materials in the MERL dataset.
None of these materials were included in our training set. Yet, our method significantly outperforms state-of-the-art decomposition based methods, such as
[Bagher et al. 2016], where the basis and coefficients should be computed for each given BRDF (i.e. the training and testing sets are not distinct).

BRDF Model
Average
SNR (dB)

Standard
Deviation

Minimum
SNR (dB)

Maximum
SNR (dB)

Ours, 𝜏𝑡 = 262, using only 𝜌𝑡1 50.65 3.8106 44.70 57.49

Ours, 𝜏𝑡 = 262, using only 𝜌𝑡2 47.08 8.5939 36.40 62.16

Ours, 𝜏𝑡 = 262, using Gamma-mapped-MSE 52.51 4.9752 44.55 62.16

Bagher et al. [2016] 42.76 11.6323 27.11 63.88
Bilgili et al. [2011] 32.63 5.8724 22.86 43.17

Tongbuasirilai et al. [2019] using CPD-PDV rank-1 (L=1) 33.83 5.5236 22.22 42.71

Tongbuasirilai et al. [2019] using CPD-HD rank-1 (L=1) 32.51 8.4995 22.97 52.27
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Fig. 2. Visual quality of selected materials from the MERL test set. For our model we used 𝜏𝑡 = 262 coefficients in order to compare with the method of
Bagher et al. [Bagher et al. 2016]. Renderings are gamma corrected for display. The error images have been multiplied by 10.0 for visual comparisons. All
images have been rendered using PBRT [Pharr and Humphreys 2010] with the Grace Cathedral environment map.

evaluate BRDF models in many publications, RAE is very useful to capture the model accuracy without relying on a specific rendering
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Fig. 3. Visual quality of selected materials from the DTU dataset [Nielsen et al. 2015]. For our model we used 𝜏𝑡 = 262 coefficients with log-plus and
cosine-weighted-log transformations. Renderings are gamma corrected for display. The error images have been multiplied by 10.0 for visual comparisons. All
images have been rendered using PBRT [Pharr and Humphreys 2010] with the Grace Cathedral environment map.

setup. This is because RAE is computed on all BRDF values, while

rendering SNR only takes into account a portion of the BRDF values,

depending on the rendering setup. Note that for rendering, we invert

equations (1) and (2) to transform the reconstructed BRDFs back to

the original linear domain, which is required by the renderer.

We compare our results to Bagher et al. [2016] (naive model),

Bilgili et al. [2011] (Tucker decomposition) and Tongbuasirilai et

al. [2019] (rank-1 CPD decomposition with L = 1) on 15 MERL test

materials. The method of Bagher et al. [2016] stores (90 + 90 +
180 + 2) = 362 coefficients per channel, Bligili et al.[2011] uses

(128+16+16+64+2) = 226 coefficients, and the CPD decompositions

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Table 4. Rendering SNR and BRDF-space RAE values obtained with our
BRDF model and that of Bagher et al. [2016], on 15 test materials of the
MERL dataset using 𝜏𝑡 = 262. These materials were not used in our training
set. Higher rendering SNR is highlighted in bold.

Material SNR (dB) RAE
Our Bagher Our Bagher

blue-fabric 62.16 63.88 0.8695 0.3596
blue-metallic-paint 60.53 44.86 0.4287 0.2736
dark-red-paint 54.80 57.89 0.2717 0.4955

gold-metallic-paint2 48.29 29.77 0.0811 0.7007

green-metallic-paint2 57.48 51.04 0.0726 0.4209

light-red-paint 51.68 51.36 0.2583 0.5639

pink-fabric2 52.71 52.44 0.8581 0.3388
purple-paint 47.22 44.29 0.1144 0.4428

red-fabric 55.05 51.44 0.7160 0.4163
red-metallic-paint 52.70 34.06 0.0752 0.7181

silver-metallic-paint2 44.55 27.11 0.6256 0.3626
specular-green-phenolic 53.09 35.69 0.0673 0.6414

specular-violet-phenolic 50.51 37.76 0.0592 0.6592

specular-yellow-phenolic 46.81 28.14 0.0683 0.7370

violet-acrylic 50.07 31.68 0.0653 0.5156

Table 5. Rendering SNR and BRDF-space RAE values obtained with our
BRDF model on 5 test materials of the RGL-EPFL dataset using 𝜏𝑡 = 262.
The bottom row shows mean of each column. The last column presents
SNR results of our model selection method based on Gamma-mapped-MSE
described in Section 3.4.

Material Our 𝜌𝑡1 Our 𝜌𝑡2 Sel.
SNR (dB) RAE SNR (dB) RAE SNR (dB)

acrylic-felt-green-rgb 43.23 0.9922 45.91 0.3104 45.91

cc-amber-citrine-rgb 26.33 0.5394 26.24 0.8420 26.24

ilm-l3-37-dark-green-rgb 38.92 0.9558 43.45 0.6060 43.45

paper-blue-rgb 38.92 0.9871 40.23 0.4416 40.23

vch-dragon-eye-red-rgb 40.48 0.8973 38.16 0.7989 38.16

Average 37.57 0.8744 38.80 0.5998 38.80

fromTongbuasirilai et al. [2019] uses (90+90+180) = 360 coefficients

per channel. Since the Tucker and CPD methods use an iterative

approach, we limit our comparisons to L = 1, i.e. a single factorization

was performed so that the number of coefficients used for all models

were roughly the same. The CPD method was tested using two

different parameterizations: the PDV [Löw et al. 2012; Tongbuasirilai

et al. 2019] and HD [Rusinkiewicz 1998] parameterizations.

To the best of our knowledge, the model of Bagher et al. [2016]

is the current state-of-the-art for non-parametric BRDF models.

Therefore, we set the number of coefficients 𝜏𝑡 for our model such

that we match the storage complexity of [Bagher et al. 2016]. Since

our representation is sparse, we require 1 + 1 + 2 bytes for storing

the location of each nonzero element in a sparse coefficient tensor

with size 90 × 90 × 180, as well as 8 bytes for each nonzero value.

Simple calculations show that by using 𝜏𝑡 = 262 coefficients for our

model for each color channel, we can match the storage complexity

of [Bagher et al. 2016], which uses 362 coefficients to model each

color channel of a BRDF. Note that the discrepancy in the number

Table 6. Rendering SNR and BRDF-space RAE values obtained with our
BRDF model, on 8 materials from the DTU data set [Nielsen et al. 2015]
using 𝜏𝑡 = 262. The bottom row shows means of each column. The last
column present SNR results of ourmodel selectionmethod based onGamma-
mapped-MSE described in Section 3.4.

Material Our 𝜌𝑡1 Our 𝜌𝑡2 Sel.
SNR (dB) RAE SNR (dB) RAE SNR (dB)

binder-cover 45.70 0.0611 46.12 0.0303 46.12

blue-book 47.24 0.0574 45.07 0.0258 45.07

cardboard 44.72 0.1468 48.90 0.3779 48.90

glossy-red-paper 45.16 0.0436 41.41 0.0288 45.16

green-cloth 51.60 0.1145 51.58 0.7713 51.58

notebook 43.39 0.1838 47.15 0.2805 47.15

painted-metal 46.95 0.0817 51.84 0.1240 51.84

yellow-paper 47.14 0.1289 49.04 0.4873 49.04

Average 46.49 0.1022 47.64 0.2658 48.11

(a) Logarithmic RAE

(b) Rendering SNR

Fig. 4. (a) BRDF average error plots of all test materials from MERL, EPFL,
and DTU data sets when reconstructed with increasing number of coeffi-
cients. The blue line represents log-plus transformation (𝜌𝑡1) and the red
line represents cosine-weighted-log transformation (𝜌𝑡2). (b) Average render-
ing SNR plots of all test materials from MERL, EPFL, and DTU data sets
when reconstructed with increasing number of coefficients. The plots show
increasing trend when the number of coefficients increased.

of coefficients is due to the fact that we need to store the location of

nonzero values, which penalizes our method to use less coefficients.

For the rendered images, shown in figures 2, 3, and 9, we apply

gamma-corrected tone-mapping. The error images, also known as
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(a) Rendered images of green-metallic-paint2 and error images.

(b) Rendered images of pink-fabric2 and error images.

Fig. 5. The renderings, from left to right, were produced with 𝜏𝑡 equal to
16, 64, 256, 1024, and 4096, respectively. The second rows of (a) and (b) show
error images using the Jet color map. All images have been rendered using
PBRT [Pharr and Humphreys 2010] with the Grace Cathedral environment
map.

Fig. 6. RAE plots of MERL test materials when reconstructed with increas-
ing number of coefficients. Each horizontal line, with PCA-x, indicates RAE
from PCA-based technique [Nielsen et al. 2015] where x is the number of
principal components.

false-color, produced by normalizing the absolute image-space er-

ror in the range [0, 1], followed by applying a jet color map using

MATLAB. Normalization is done individually for each BRDF repre-

sented using different models. All the error images are multiplied

by 10 to facilitate visual comparisons. Apart from what follows,

additional quantitative and qualitative results are included in the

supplementary materials.

Table 3 reports Signal-to-Noise Ratio (SNR) statistics for 15 test

materials in the MERL database. The average SNR of our model is

about 8dB, 5dB and 10dB higher for log-plus, cosine-weighted-log

and the proposed model selection based on Gamma-mapped-MSE,

respectively, when compared to Bagher et al.; moreover, our results

show a smaller standard deviation on SNR. Additionally, our pro-

posed model selection method can achieve higher SNR on average

compared to the cases where we only use log-plus or cosine-weighted-
log. The lower standard deviation indicates that the proposed model

can represent the MERL materials more faithfully. Table 4 shows a

direct comparison of our model to that of Bagher et al. [2016] for

each BRDF in the MERL test set using rendering SNR and BRDF-

space RAE. Here we use our Gamma-mapped-MSE metric to choose

between the transformations. Compared to the model of Bagher et

al., our approach achieves significantly higher visual quality on 13

out of 15 materials. In Figure 2, we present example renderings of

four BRDFs in the MERL test set modeled using our method and

[Bagher et al. 2016]. Our results are obtained using the proposed

Gamma-mapped-MSE for model selection. The HDR environment

map used here is Grace Cathedral.
The cosine-weighted-log transformation suppresses the grazing

angle BRDF values. For diffuse materials, this leads to better visual

results and significantly higher rendering SNR. It is evident from

Figure 2 that the log-plus transformation is better for glossy materi-

als as the cosine-weighted-log transformation leads to color artifacts

for some materials, e.g. gold-metallic-paint2, red-metallic-paint, and
violet-acrylic. More results for further analysis is available in the

supplementary material.

Table 5 below shows rendering SNR and BRDF-space RAE values

for the RGL-EPFL test set using both 𝜌𝑡1 and 𝜌𝑡2. Our BRDF model

and selection method can efficiently represent the RGL-EPFL data

set with an average SNR of more than 38dB. Our model selection

method on the RGL-EPFL test set missed on 2 out of 5 materials,

which are cc-amber-citrine-rgb and vch-dragon-eye-red-rgb. The SNR
values demonstrate that our data-driven model can accurately rep-

resent and faithfully reconstruct the BRDFs in the test set. See the

supplementary materials for rendered images obtained using our

model applied on the RGL-EPFL data set. Although we use a fixed

number of coefficients for all materials here for the sake of compar-

isons, i.e. 𝜏𝑡 = 262, ideally we would like to tune this parameter for

each BRDF individually. For instance, for challenging materials such

as cc-amber-citrine-rgb, the model accuracy significantly increases

with higher number of coefficients. We analyze the effect of 𝜏𝑡 on

rendering SNR and BRDF RAE in Figure 4. Rendering results for

two example BRDFs when we set 𝜏𝑡 to 16, 64, 256, 1024, and 4096

are included in Figure 5.

To demonstrate the robustness of our sparse non-parametric

model for representing BRDFs in a test set, we also evaluate it using

8 test samples in the DTU data set [Nielsen et al. 2015]. Note that

we use the same dictionary described above and that none of the

materials from the DTU data set were used in the training set. The

results are summarized in Table 6, where we report rendering SNR

and BRDF-space RAE for 𝜌𝑡1, 𝜌𝑡2, and our model selection based on

Gamma-mapped-MSE. Our BRDF model and selection method can

reproduce the DTU data set with average SNR of more than 48dB.

Our model selection algorithm on the DTU test set missed on 2 out

of 8 materials, which are blue-book and green-cloth. Visual quality
examples of the rendered images are presented in Figure 3. The

difference between 𝜌𝑡1 and 𝜌𝑡2 is evident in this figure. We can see
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(a) MERL - SNR (d) MERL - Logarithmic RAE

(b) EPFL - SNR (e) EPFL - Logarithmic RAE

(c) DTU - SNR (f) DTU - Logarithmic RAE

Fig. 7. Bar plots of average rendering SNR results from (a) MERL, (b) EPFL and (c) DTU data sets. The blue bars are rendering SNR from PCA-based
reconstructions while the orange bars are rendering SNR from our reconstructions. PCA-2, PCA-3 and PCA-4 are reconstructed results from PCA using 2,3
and 4 principal components respectively. Our-453601, Our-939601 and Our 1425601 are reconstructed results from our model using 𝜏𝑡 = 453601, 939601 and
1425601 respectively.

that 𝜌𝑡1 is favored by glossy materials, while 𝜌𝑡2 is more effective

in modeling low-frequency or diffuse-like materials. For instance,

we observe that the artifacts seen on the cardboard and green-cloth
renderings for log-plus (𝜌𝑡1) do not appear in cosine-weighted-log
(𝜌𝑡2) renderings. For this figure we used the Grace Cathedral HDR
environment map.

Our results confirm the discrepancy between BRDF-space er-

ror metrics (such as RAE) and rendering quality using SNR. For

example, blue-metallic-paint in Table 4, cardboard in Table 6, and

vch-dragon-eye-red-rgb in Table 5 demonstrate how RAE contradicts

the rendering SNR. The lower the BRDF-space RAE is, the more

accurate the model represents a BRDF. However, a rendered image

is dependent on a variety of additional factors such as geometry of

objects, lighting environment, and viewing position. As a result, the

BRDF-space RAE and rendering SNR have to be considered together

for the evaluation of a BRDF model.

Figure 4(a) demonstrates the effectiveness of our BRDF model on

all data sets with respect to the number of coefficients, 𝜏𝑡 . In terms

of the decline of error with respect to the number of coefficients, all

data sets show a similar behavior. Moreover, all the data sets have

poor RAE when 𝜏𝑡 < 32. This behavior is expected since the training

sparsity is set to 𝜏𝑙 = 32, 𝜏𝑙 = 64, 𝜏𝑙 = 128, and 𝜏𝑙 = 256. And when
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(a) red-metallic-paint and specular-yellow-phenolic

(b) dark-red-paint and pink-fabric2

(c) cc-amber-citrine-rgb and silver-metallic-paint2

(d) vch-dragon-eye-red-rgb and red-fabric

Fig. 8. Four examples of BRDF interpolations. We provide interpolation examples from different material classes. These examples are (a) glossy-glossy
materials, (b) glossy-diffuse materials, (c) layered-glossy materials and (d) layered-diffuse materials. From left to write, the interpolation coefficient 𝛼 has
values 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The renderings were produced with 𝜏𝑡 = 512.

we have 𝜏𝑡 < 𝜏𝑙 , we expect a decline in performance. Figure 4(b)

indicates that our model generally produces incrementally better

rendering results when the number of coefficients is increased for all

the data sets. Ourmodel performs best for theMERL data set because

most of the training data are from MERL, while EPFL has fewer

number of materials in the training. Although we do not include

any materials from the DTU data set in the training, the rendering

SNR and BRDF RAE are competitive with MERL reconstructions.

We also evaluated our BRDF model with the PCA-based method

presented in [Nielsen et al. 2015], see Figure 6. Our RAE performs

similar to PCA-based method with 32 principal components and

whenwe have 𝜏𝑡 = 32.We see that for a lower number of coefficients

the PCA-based method outperforms our method since our minimum

training sparsity is 32. It should be noted that the PCA dictionary

exhibits a very high storage cost compared to our BRDF dictionary

ensemble. The PCA dictionary contains 1458000×𝑝 elements, where

𝑝 is the number of principal components, while our combined dictio-

nary ensemble consists of (90∗90+90∗90+180∗180)∗32 = 1, 555, 200

elements. This shows that the storage complexity of the PCA dic-

tionary is proportional to the number of principal components,

whereas for our dictionary ensemble the storage complexity is con-

stant. In figures 7(a), 7(b), and 7(c), we present the rendering SNR

and in figures 7(d), 7(e), and 7(f) we present the logarithmic BRDF-

space RAE for all three data sets in comparison to [Nielsen et al.

2015], where we compensate for the size of the PCA dictionary by

increasing the number of coefficients of our method, 𝜏𝑡 . When con-

sidering the size of the dictionaries, the PCA method with 2,3 and 4

principal components corresponds to our model with 𝜏𝑡 = 453601,

𝜏𝑡 = 939601, and 𝜏𝑡 = 1425601, respectively. The bar plots indi-

cate that, for all data sets, our model performs better than the PCA

technique by a large margin on both quality metrics.

To demonstrate our BRDF interpolation method on the sparse co-

efficient space (the sparseland), we provide a number of challenging

examples in Figure 8 for different material classes using Equation

(19) introduced in Section 3.5. The interpolation coefficient, 𝛼 , was

set between 0.0 and 1.0 with increments of 0.1. Figure 8(a) illustrates

the interpolation between two materials, i.e. red-metallic-paint and
specular-yellow-phenolic, and Figure 8(b) shows the interpolation

of two diffuse materials, namely dark-red-paint and pink-fabric2.
Figure 8(c) gives an example of a layered material, cc-amber-citrine-
rgb, and a glossy material, silver-metallic-paint2. Finally, Figure 8(d)
is an example of vinyl film, vch-dragon-eye-red-rgb, and a diffuse

material, red-fabric. Note that each BRDF pair we use here share

the same transformation (i.e. 𝜌𝑡1 or 𝜌𝑡2 as discussed in Section 3.1).

As shown in the rendered images, our BRDF interpolation on the

sparse coefficient space provides a smooth transition between the

material pairs. For these experiments, we used 𝜏𝑡 = 512 for the

model selection algorithm. Moreover, as mentioned in Section 3.5,

we run the projection step of the model selection algorithm on the

interpolated BRDF to obtain a desired sparsity, in this case 𝜏𝑡 = 512.

Note that this parameter is user-defined and can be changed to

obtain a trade-off between quality and storage complexity for the

interpolated BRDF.

In Figure 9, we evaluate our BRDF model using the Princeton
scenewith the followingmaterials: blue-metallic-paint, gold-metallic-
paint2, pink-fabric2, silver-metallic-paint2, and specular-yellow-phenolic.
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(a) Ours, SNR = 32.95dB (b) absolute error

(c) Bagher et al. SNR = 24.92dB (d) absolute error

(e) reference

Fig. 9. Renderings of the Princeton scene using (a) our BRDF model and (c)
the model of Bagher et al. All images were rendered at 131072 samples/pixel
using the path tracing algorithm of PBRT.

We rendered the scenewith path tracing in PBRT [Pharr andHumphreys

2010] using the uffizi environment map and with 2
17

samples-per-

pixel. Figures 9(a) and 9(c) present rendered images from our model

and Bagher et al., respectively. Our model achieves an 8.03dB ad-

vantage in SNR over the model of Bagher et al.

5 LIMITATIONS AND FUTURE WORK
The experiments conducted in this paper are limited to isotropic

BRDFs. This is partially due to the lack in availability of anisotropic

BRDF data. As part of the future work, we aim to extend our sparse

models to efficiently represent also anisotropic materials. Moreover,

we acknowledge the fact that the discrepancy between BRDF-space

errors and the rendering quality is still an open problem. Although

we showed significant improvements using our Gamma-mapped-

MSE, we believe that a more sophisticated metric that takes into

account the support of the BRDF function can improve our results.

Our model is relatively robust to noise. However, we believe that an

application of a denoising pass that is tailored to measured BRDFs,

prior to training and model selection, can greatly improve our re-

sults. This is expected since it is well-known that even a moderate

amount of noise in measured BRDFs translates to lower rendering

quality; and that noise reduces the sparsity of the representation,

hence increasing the model complexity. An alternative to applying

a denoiser is to modify the training and model selection methods to

be noise-aware.

The proposed interpolation algorithm enables a variety of applica-

tions where the BRDFs processing can be performed directly in the

coefficient space rather than the substantially higher-dimensional

BRDF space. For instance, rendering of smooth surfaces where each

point on the surface has a distinct measured BRDF (i.e. spatially

varying BRDFs) can be efficiently performed using our model. More-

over, editing of measured BRDFs can be performed directly in the

coefficient space by utilizing the shallow network proposed in [Hu

et al. 2020] that maps our sparse representation of materials to

known BRDF properties. We have left these applications of our

model for future work. Another interesting venue for future work

is the utilization of our model for sampling BRDFs, using e.g. a go-

nioreflectometer, where only a few samples are taken to reconstruct

a full BRDF, similar to [Nielsen et al. 2015].

Our model is GPU-friendly because it consists of parallel oper-

ations where atoms and coefficients can be efficiently distributed

and operated among GPU cores. There exists a variety of GPGPU

algorithms for performing key tasks in our method; for instance, a

GPU-based implementation of the n-mode product is described in

[Baravdish. et al. 2019]. As the main focus in this paper is to derive

and evaluate a novel non-parametric BRDF model, we have left the

GPU implementation of our method to future work. However, given

the small memory footprint of our model, and fast BRDF recon-

struction using Eq. (7), existing real-time ray tracing systems can be

modified to accommodate our model for measured materials. More-

over, since the quality of our model is solely controlled using the

𝜏𝑡 parameter, one can linearly control the rendering performance

using this parameter.

Quality metrics for effective BRDF fitting is an open problem

[Lavoué et al. 2021]. In this paper, we showed the discrepancy be-

tween the results of RAE and rendering SNR. We then propose a

model selection technique to reduce the gap between the visual qual-

ity and the numerical quality metrics. We believe that our model

selection algorithm can benefit from more accurate error metrics

to further increase the visual quality. Due to the robustness of our

model selection algorithm, any new mathematical error metric that

is suitable for measured BRDFs can be used in (6).

One of the limitations of the proposed model is the assumption

of same resolution for the BRDFs in the training and testing sets.

This is a limiting factor for BRDF data sets that are not densely

sampled. One possible solution for these scenarios is that we train

the model based on densely sampled BRDFs. For a given sparsely

sampled BRDF to be modeled, we first create a dense BRDF by

copying known values and setting unknown values to zero. We then

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.



A Sparse Non-parametric BRDF Model • 1:17

iteratively perform the model selection algorithm on the obtained

BRDF. At the first iteration, we obtain a crude approximation for

the unknown values. This crude approximation is then improved

iteratively by the consecutive runs of the model selection algorithm.

We have left a full exploration of such method for future work.

6 CONCLUSIONS
This paper presented a novel non-parametric sparse BRDF model

in which a measured BRDF is represented using a trained multidi-

mensional dictionary ensemble and a set of sparse coefficients. We

showed that with careful model selection over the space of mul-

tidimensional dictionaries and various BRDF transformations, we

achieve significantly higher rendering quality and model accuracy

compared to current state-of-the-art. Finally, we introduced a novel

algorithm for interpolation of two or more BRDFs, modeled using

our approach, directly in the coefficient space, even when the given

BRDF data points used for the interpolation utilize distinct dictio-

naries. We evaluated the performance of our model and algorithm

using three different data sets, MERL, RGL-EPFL, and one provided

by Nielsen et al. [2015]. For the vast majority of the BRDFs used in

the test set we achieve a significant advantage over previous models.
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